Continuous random variables

Probability density function
Cumulative distribution function
Common distributions

Continuous random variables

Uncountable number of values

Examples:

- Time taken to perform a task
- Weight of a parcel coming through a post office
- Remaining lifetime of a person
- Value of an investment fund

Probability density function

- Discrete random variable: probability mass function P(X=x)
- Continuous random variable: probability density function

Probabilities are calculated by calculating area under the probability density function curve.

Probability density function

Total area under the curve $=1$
Shaded area $=P(X \leq a)=F(a)$

Probability density function

Properties of a probability density function:

- $f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x) d x=1$

Probability density function

For a continuous random variable $P(X=a)=0$, so we can only find probabilities that X lies in a certain interval.

So for a continuous random variable
$P(X<a)=P(X \leq a)$

Integration formulas

$$
\begin{aligned}
& \int a d x=a x+c \\
& \int x d x=\frac{1}{2} x^{2}+c \\
& \int x^{2} d x=\frac{1}{3} x^{3}+c \\
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \\
& \int e^{x} d x=e^{x}+c \\
& \int \frac{1}{x} d x=\ln |x|+c
\end{aligned}
$$

Integration

$$
\begin{aligned}
& \int_{0}^{1} x^{5} d x=\left[\frac{1}{6} x^{6}\right]_{0}^{1}=\frac{1}{6} \times\left(1^{6}-0\right)=\frac{1}{6} \\
& \int_{1}^{2} x^{-3} d x=\left[\frac{1}{-2} x^{-2}\right]_{1}^{2}=-\frac{1}{2} \times\left[\frac{1}{x^{2}}\right]_{1}^{2}=-\frac{1}{2} \times\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)=\frac{3}{8}
\end{aligned}
$$

Example

$$
f(x)=\left\{\begin{array}{lr}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

$$
\int_{0}^{2} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{0}^{2}=\frac{3}{8} \times\left(\frac{1}{3} \times 2^{3}-\frac{1}{3} \times 0^{3}\right)=1
$$

Example

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
P\left(X<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{0}^{\frac{1}{2}}=\frac{1}{8} \times\left(\left(\frac{1}{2}\right)^{3}-0^{3}\right)=\frac{1}{64} \\
P(X>1)=\int_{1}^{2} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{1}^{2}=\frac{1}{8} \times\left(2^{3}-1^{3}\right)=\frac{7}{8}
\end{gathered}
$$

Example

Finding cumulative distribution function

$$
\begin{aligned}
& F(a)=P(X \leq a)=\int_{0}^{a} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{0}^{a}=\frac{1}{8} \times\left(a^{3}-0^{3}\right) \\
& F(a)=\frac{a^{3}}{8} \\
& F(x)=\left\{\begin{array}{c}
0 \text { for } \quad x<0 \\
\frac{x^{3}}{8} \text { for } 0 \leq x \leq 2 \\
1 \text { for } x>2
\end{array}\right.
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{c}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array} \quad F(x)=\left\{\begin{array}{c}
0 \text { for } x<0 \\
\frac{x^{3}}{8} \text { for } 0 \leq x \leq 2 \\
1 \text { for } x>2
\end{array}\right.\right. \\
& P(X<1.2)=\int_{0}^{1.2} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{0}^{1.2}=\frac{1}{8} \times\left(1.2^{3}-0^{3}\right)=0.216 \\
& P(X<1.2)=F(1.2)=\frac{1.2^{3}}{8}=0.216
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array} \quad F(x)=\left\{\begin{array}{c}
0 \text { for } x<0 \\
\frac{x^{3}}{8} \text { for } 0 \leq x \leq 2 \\
1 \text { for } x>2
\end{array}\right.\right. \\
& P(1<X<1.5)=\int_{1}^{1.5} \frac{3}{8} x^{2} d x=\frac{3}{8} \times\left[\frac{1}{3} x^{3}\right]_{1}^{1.5}=\frac{1}{8} \times\left(1.5^{3}-1^{3}\right)=0.297 \\
& P(1<X<1.5)=F(1.5)-F(1)=\frac{1.5^{3}}{8}-\frac{1^{3}}{8}=0.297
\end{aligned}
$$

Using cumulative distribution function

$$
\begin{gathered}
P(X \leq x)=F(x) \\
P(X>x)=1-F(x) \\
P(a \leq X \leq b)=F(b)-F(a)
\end{gathered}
$$

Expected value

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{\infty} x \times f(x) d x \\
& E(a X+b)=a E(X)+b \\
& E(X+Y)=E(X)+E(Y)
\end{aligned}
$$

Expected value

$$
\begin{gathered}
E(X)=\int_{-\infty}^{\infty} x f(x) d x \\
f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
E(X)=\int_{0}^{2} x \frac{3}{8} x^{2} d x=\frac{3}{8} \int_{0}^{2} x^{3} d x=\frac{3}{8} \times\left[\frac{1}{4} x^{4}\right]_{0}^{2}= \\
=\frac{3}{32}\left(2^{4}-0\right)=\frac{3}{32} \times 16=\frac{3}{2}
\end{gathered}
$$

Expected value of a function of random variable

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) \times f(x) d x
$$

In particular

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} \times f(x) d x
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

Example

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
& E\left(X^{2}\right)=\int_{0}^{2} x^{2} \frac{3}{8} x^{2} d x=\frac{3}{8} \int_{0}^{2} x^{4} d x=\frac{3}{8} \times\left[\frac{1}{5} x^{5}\right]_{0}^{2}= \\
& =\frac{3}{40}\left(2^{5}-0\right)=\frac{3}{40} \times 32=\frac{12}{5} \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{12}{5}-\left(\frac{3}{2}\right)^{2}=\frac{3}{20}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{3}{8} x^{2} \text { for } 0 \leq x \leq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
& E\left(X^{3}\right)=\int_{0}^{2} x^{3} \frac{3}{8} x^{2} d x=\frac{3}{8} \int_{0}^{2} x^{5} d x=\frac{3}{8} \times\left[\frac{1}{6} x^{6}\right]_{0}^{2}= \\
& =\frac{1}{16}\left(2^{6}-0\right)=\frac{1}{16} \times 64=4 \\
& E\left(X^{4}\right)=\int_{0}^{2} x^{4} \frac{3}{8} x^{2} d x=\frac{3}{8} \int_{0}^{2} x^{6} d x=\frac{3}{8} \times\left[\frac{1}{7} x^{7}\right]_{0}^{2}= \\
& =\frac{3}{56}\left(2^{7}-0\right)=\frac{3}{56} \times 128=6.86
\end{aligned}
$$

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
\frac{2}{x^{2}} \text { for } x \geq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
P(X>6)=\int_{6}^{\infty} \frac{2}{x^{2}} d x=2 \int_{6}^{\infty} x^{-2} d x=2 \times\left[\frac{1}{-1} x^{-1}\right]_{6}^{\infty}= \\
=-2 \times\left[\frac{1}{x}\right]_{6}^{\infty}=-2\left(0-\frac{1}{6}\right)=\frac{1}{3}
\end{gathered}
$$

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
\frac{2}{x^{2}} \text { for } x \geq 2 \\
0 \quad \text { elsewhere }
\end{array}\right. \\
P(X \leq 6)=\int_{2}^{6} \frac{2}{x^{2}} d x=2 \int_{2}^{6} x^{-2} d x=2 \times\left[\frac{1}{-1} x^{-1}\right]_{2}^{6}= \\
=-2 \times\left[\frac{1}{x}\right]_{2}^{6}=-2\left(\frac{1}{6}-\frac{1}{2}\right)=-2\left(\frac{2}{12}-\frac{6}{12}\right)=\frac{2}{3} \\
P(X>6)=1-\frac{2}{3}=\frac{1}{3}
\end{gathered}
$$

Common types of continuous probability distributions

Continuous uniform distribution
Exponential distribution
Normal distribution

Continuous uniform distribution

If X has continuous uniform distribution in an interval (a, b) then its probability density function is

$$
f(x)=\frac{1}{b-a}
$$

for $\mathrm{a}<\mathrm{x}<\mathrm{b}$ and $\mathrm{f}(\mathrm{x})=0$ otherwise.

Continuous uniform distribution

Probability density function is constant:

Area under the curve $=$ area of the rectangle $=(b-a) \times \frac{1}{b-a}=1$

Continuous uniform distribution

Cumulative distribution function can be expressed with a formula:

$$
F(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<a \\
\frac{x-a}{b-a} & \text { for } & \leq x \leq b \\
1 & \text { for } & x>b
\end{array}\right.
$$

Continuous uniform distribution

- Expected value

$$
E(X)=\frac{a+b}{2}
$$

- Variance

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Example

X has a uniform distribution in an interval $(0,10)$. Calculate $P(X<2)$, $P(X>5)$ and $P(3<X<7)$.
Calculate $E(X)$ and $\operatorname{Var}(X)$.

Solution

X has uniform distribution with $\mathrm{a}=0$ and $\mathrm{b}=10$. Then

$$
\begin{gathered}
f(x)=\frac{1}{10} \text { for } 0<x<10 \\
P(X<2)=\int_{0}^{2} \frac{1}{10} d x=\left[\frac{1}{10} x\right]_{0}^{2}=\frac{1}{10} \times(2-0)=\frac{2}{10}=0.2 \\
P(X>5)=\int_{5}^{10} \frac{1}{10} d x=\left[\frac{1}{10} x\right]_{5}^{10}=\frac{1}{10} \times(10-5)=\frac{5}{10}=0.5
\end{gathered}
$$

Solution

X has uniform distribution with $\mathrm{a}=0$ and $\mathrm{b}=10$. Then

$$
\begin{gathered}
f(x)=\frac{1}{10} \text { for } 0<x<10 \\
P(3<X<7)=\int_{3}^{7} \frac{1}{10} d x=\left[\frac{1}{10} x\right]_{3}^{7}=\frac{1}{10} \times(7-3)=\frac{4}{10}=0.4
\end{gathered}
$$

Solution

X has uniform distribution with $a=0$ and $b=10$. Then

$$
\begin{gathered}
F(x)=\left\{\begin{array}{c}
0 \text { for } \quad x<0 \\
\frac{x}{10} \text { for } 0 \leq x \leq 10 \\
1 \text { for } \quad x>10
\end{array}\right. \\
P(X<2)=F(2)=\frac{2}{10}=0.2
\end{gathered}
$$

Solution

$$
\begin{aligned}
& P(X>5)=1-F(5)=1-\frac{5}{10}=\frac{1}{2}=0.5 \\
& P(3<X<7)=F(7)-F(3)=\frac{7}{10}-\frac{3}{10}=\frac{4}{10}=0.4 \\
& E(X)=\frac{0+10}{2}=5 \\
& \operatorname{Var}(X)=\frac{(10-0)^{2}}{12}=\frac{100}{12}=\frac{25}{3}=8.33
\end{aligned}
$$

